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Abstract: The kinetics of the equilibration of planar spin-singlet and tetrahedral spin-triplet species of Ni(II) complexes are de­
scribed using two different but related theoretical approaches. Both employ simplified potential energy curves in a twisting 
coordinate together with the Landau-Zener model for transitions at curve crossings. First, the number of approaches to a 
crossing needed per second in order for the half-life of a given spin state not to exceed approximately 1O-6 s is calculated. The 
resulting value of —10'2 is compatible with estimated torsional frequencies. Second, the general method of analyzing kinetic 
networks known as dynamical systems theory is outlined and applied to the description of chemical relaxation such as occurs 
in experiments where the thermal equilibrium between planar and tetrahedral species is disturbed. Eigenvalues (decay con­
stants) and eigenvectors for displacements from equilibrium are calculated for a number of model kinetic systems having the 
cyclic symmetry characteristic of the interconversion of the structures of Ni(II) complexes along non-bond-rupturing bending 
and twisting coordinates. 

I. Introduction 

In the first article of this series,1 hereafter denoted as I, 
we briefly reviewed the experimental evidence for the rapid 
interconversion of "planar" spin-singlet and "tetrahedral" 
spin-triplet species of certain four-coordinate complexes of 
Ni(II). We then introduced "global" bending and twisting 
coordinates which connect these structures, and presented 
potential energy curves in these coordinates as calculated using 
an extended crystal-field model. Although there are a total of 
14 levels (components of multiplets) which are mixed with the 
lowest spin-singlet when spin-orbit coupling is introduced in 
Di symmetry, only three of these, namely, the Aj (J = 0) and 
E (J = 2) levels of the lowest 3Ti multiplet of a tetrahedral 
species, actually cross the lowest spin singlet when spin-orbit 
coupling is omitted. Thus, only this smaller number of levels 
is considered in the analysis which follows. The potential en­
ergy curves shown in Figure 6-8 of I as functions of the angles 
$ and 6 are quite different for these three levels, and in fact the 
curves suggest that a planar structure may be the preferred 
structure for the 3B2g multiplet (notation for D^h symmetry), 
but not for the other low-lying triplet components. However, 
it should be recalled that the potential energy curves in I do not 
include any ligand-ligand repulsions, so that they should be 
used to compare energies of different states at a given geometry 
rather than to compare energies of a given state at different 
geometries. In order to explore more easily the "curve-hop­
ping" description of the interconversion kinetics we now in­
troduce simple empirical potential energy functions which have 
the qualitative features of the curves in the angle $ shown in 
Figures 6 and 7 of I, but which correspond to more realistic 
values of the activation energy defined as the difference be­
tween the energy at the crossing of singlet and triplet curves 
and the minimum energy for the more stable species. 

II. Simplified Potential Energy Curves 

For complexes of the Ni(L-L)2 and Ni(L-L)X2 types, the 
relevant internal motion is that through the angle <£ as defined 
in I. If the bidentate ligands are symmetric, the potential en­
ergy is twofold in a twist angle a = 2$. For the singlet state we 
write on the approximate form 

Vs(a) = a[\ - c o s (2a)] (1) 

where a = ir/2 and 3ir/2 for the twisted structures of Td or Did 
symmetry [nonplanar structures of Ci0 symmetry for Ni (L-
L)X2] with energy 2a, and a = 0 and T for the planar struc­
tures of Dih or Z)4/, symmetry [planar structures of Civ sym­
metry for Ni(L-L)X2], with energy zero. Alternatively, as 
displayed in Figures 1 and 3 of I, the potential energy may be 
viewed as fourfold in $. For some component of the triplet 
state, we similarly write 

Vr (a) = b + c[\ + cos (2a)] (2) 

The energy of the triplet at the planar geometry is b + 2c, 
while the energy at the twisted geometry is b, which is also the 
adiabatic energy difference between the triplet and singlet 
minima. From the crystal-field results in I we saw that different 
components of the tetrahedral 3Ti term will give rise to curves 
of the approximate form of eq 2, but with different values for 
the parameters b and c. Some components, in fact, may have 
energy minima for a planar rather than a twisted geometry. 
For purposes of illustration we will consider only a single curve 
of the form of eq 2, with parameters appropriate to some 
component which "connects" to the singlet when spin-orbit 
coupling is "turned on". 

In general eq 1 and 2 do not intersect at a = T / 4 ( $ = x /8) , 
but instead at ao given by 

cos (2a0) = (a - b - c)/(a + c) (3) 

where 

Ks = V7 = a(b + 2c)/(a + c) (4) 

The introduction of spin-orbit coupling replaces this crossing 
by an avoided crossing described by the solution of a 2 X 2 
secular equation using eq I and 2 as diagonal elements. A 
simple functional form which has the essential features of the 
lower root of such an equation is given by the twofold form 

V0 (a) = d[\ - cos (2a)] + e[\ - cos (4a)] (5) 

which has local minima of zero at a = 0 and 2d at a = ir/2. 
There is a maximum at cos (2a) = —d/2e, at which Vo (a) = 
(d + 4e)2/Se. We may fit eq 5 to eq 1 and 2 by requiring that 
V0 = Ks and V0" = Vs" at a = 0 (double primes denote second 
derivatives with respect to a), and that V0 = Vj and VQ" = Vj" 
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at a = TT/2. Thus 

d=b/2=(a- c)/2 

e= (a + c)/8 
(6) 

The relationship b = a — c reduces to two the number of in­
dependent parameters in eq 1 and 2. In this case from eq 3 and 
4 we find Vs= Vj = d + 4e = a = b + ca\.a = ir/4; K0 is 2e 
below this crossing of the unperturbed curves. 

As an example we use the experimental data2 for Ni(dpp)-
Cl2, setting K0 or Vj at a = ir/2 equal to AH" = 1.7 ± 0.2 
kcal/mol = b, and Ks or Vj at a = 7r/4 equal to A// t* = 8.4 
± 0.2 kcal/mol = a. Thus d and e equal 0.85 and 1.89 kcal/ 
mol, respectively. Figure 1 shows Ks, Vj, and Vo vs. a for this 
parametrization. The maximum in K0 is approximately 3.8 
kcal/mol below the crossing of Ks and Vj, reducing the ef­
fective activation energy by about twice the spin-orbit energy 
of f(3rf) = 1.86 kcal/mol for Ni(II). Thus the simple form of 
eq 5 has led to a somewhat exaggerated difference between K0 
and the intersection of Ks and Vj. An alternate parametriza­
tion is to set AH1* equal to the maximum in VQ, thus giving a 
"correct" activation energy. This latter choice yields param­
eters of d and e equal to 0.85 and 3.76 kcal/mol, respectively, 
with the maximum in Vo occurring at an angle slightly greater 
than x/4, namely, at a = 0.259ir, where cos (2a) = -d/4e. 

III. Landau-Zener Transition Probabilities and Spin 
Lifetimes 

Let us assume that a good potential energy function in d and 
$, or just in $ for monobidentate or bisbidentate complexes, 
is available, either from molecular orbital calculations, ligand 
field calculations, or by an empirical fit of forms such as those 
described in the previous section to experimental data. The 
question now is how to describe the kinetics of the process 

planar (S = 0) - • tetrahedral (S = 1) (7) 

or of its reverse. Since the reduced moments of inertia are large, 
so that "torsional" vibrational spacings are small compared 
to kT at room temperature, it is reasonable to employ insofar 
as possible a classical picture of the motion on the potential 
energy surface. The intersecting sinusoidal curves in the 
variable $ as described in the previous section lead to an in­
tersecting "roller-coaster" picture of the intramolecular motion 
and spin conversion. If the energy E in the torsional mode is 
less than the potential energy K($) at the crossing, no con­
version can occur, and the system merely oscillates quasi-
harmonically in either the singlet or the triplet well. If E is 
greater than K(<t>) at the crossing, but less than the maximum 
in Ks or Vj, the motion is still basically oscillatory, but each 
time the system passes through the crossing there is a possi­
bility of a spin change. If E is greater than the maxima of K5 
and Vj, the motion is rotatory, but again with a probability of 
a spin change at each crossing. Thus there is a resemblance to 
curve crossings arising in atomic collisions associated with 
reactions such as a charge neutralization reaction 

M+ + X- — M + I (8) 

or its reverse. In the above collision the system passes through 
the crossing point twice (once going in to a turning point and 
once going back out), so that if P is the probability per crossing 
of no change in electronic state, and 1 - P is the probability 
per crossing of a change, then the probability of the reaction 
is 2P( 1 - P) and that of no reaction is P2 + (1 - P)2. Since 
there is some energy of interaction £12 between the two states 
at the crossing, the true adiabatic curves do not cross, so that 
the term adiabatic refers to the passage in which there is a 
change in electronic state, and the term nonadiahatic to the 
passage in which there is not a. change. 
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Figure 1. Plots of Ks, Vj, and V0 from eq 1, 2, and 5, respectively, vs. twist 
angle a = 2$, using parameters obtained by setting VQ or Vj at a = ir/2 
equal to the planar-tetrahedral energy difference AH" for Ni(dpp)Cl2 
(ref 2) and Ks or Vj at a = x/4 equal to the activation energy AW1* for 
this complex. 

In the familiar Landau-Zener description3-10 of these 
transitions, the nonadiahatic probability P is given by 

P{v) = exp[-2Tr£i22/M*o)|si - s2\] (9) 

where £12 is the interaction energy at the crossing coordinate 
*o, v(*o) is the magnitude of the velocity at the crossing, 151 
- 521 is the magnitude of the difference in slopes of the curves 
V] and K2 at the crossing, and h is Planck's constant divided 
by 2ir. The velocity V(XQ) is given by 

U(X0) = [2[E -K(xo) ] /w | ' / 2 (10) 

where E is the total energy in the reaction coordinate, V(XQ) 
is the potential energy at the crossing of the unperturbed 
curves, and m is the reduced mass. Later we shall replace the 
symbol V(xo) by E* to denote its role as the activation energy. 
Using Ks(a) from eq I and Vj (a) from eq 2 as V\ and K2, 
respectively, 

\s\ - s2\ = 2(a + c) sin (2an) (H) 
where an corresponds to the intersection and is given by eq 3. 
For the special case b = a — c which we used in fitting eq I and 
2 to eq 5, an = ir/4, so that \s\ - s2\ = 2(a + c). Thus for the 
first and second parametrizations described in section I using 
Ni(dpp)Cl2 data, |si - s2\ equals 30.2 and 60.2 kcal mol~' 
rad - ' , respectively. We shall use these values in obtaining 
rough estimates of eq 9. 

The approximations inherent in the Landau-Zener model 
have been discussed by many authors,3"10 with particular 
emphasis on its accuracy for very small values of v(xn). 
Coulson and Zalewski6 have shown that the limits within which 
the original Landau-Zener formula (eq 9) is valid are seldom 
found in actual practice. They give a more generally valid ex­
pression involving an integral of the interaction energy E\2(R) 
over the entire range of the appropriate nuclear coordinate R. 
However, as a rough guide to the reaction probability we use 
the simple form given in eq 9. This assumption seems justifiable 
as a first step since we do not require the detailed information 
given by the reaction probability as a function of energy (or 
velocity), but instead need only the Boltzmann averaged re­
action probability. This averaging is described below and in 
the Appendix. 
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Figure 2. Plot of the Landau-Zener reaction probability of eq Al vs. re­
duced energy y of eq 13 for various values of the reduced parameter x of 
eq 12. Also shown (dashed curve) is a Boltzmann factor in the reduced 
energy^, with the multiplicative factor txp(-V*/kT) omitted so that the 
Boltzmann factor is unity for y = 0. 

Whereas in a reaction such as eq 8 there are just two cross­
ings per collision, the cyclic nature of the twisting coordinate 
$ causes the Ni(II) complex to pass repeatedly through 
crossing points. Thus even if the thermally averaged adiabatic 
transition probability 1 -P(T) is very small for a single 
crossing, the probability per unit time might be large given a 
high frequency of crossings. This is the result which we wish 
to demonstrate in this section. 

We now define dimensionless variables 

x = (ImYI2ItE{2
2/h\s\ - s2\(kTy'2 (12) 

and 

y= [E- V(X0)VkT = [E-E*]/kT (13) 

in which E* = V(xo) is the activation energy, so that eq 9 may 
be written in the reduced form 

P(y) ^expOt/y'/2) (14) 

The Boltzmann constant k used in eq 12 and 13, as well as in 
many subsequent equations, will be understood to be replaced 
by the gas constant R when energies are used in kcal/mol. 
Note that T does not appear in eq 9; its inclusion in eq 12 and 
13 is for later convenience in thermal averaging. We now de­
note eq 14 as PNRCV). tn e probability of no reaction per 
crossing, and the complementary probability 1 — />NR as PR, 
the probability of reaction per crossing. Figure 2 shows PR(J>) 
vs. y for various values of x ranging from 0.1 to 50.0. At y = 
0, which is the reaction threshold, PR = 0 and 6PR/dy = 1, 
although this limiting slope is not obvious in Figure 2 for the 
smaller x values. Also shown in Figure 2 is a Boltzmann factor 
exp(— y)\ we note for x > 1 that PR is essentially unity for 
energies many kT above threshold, while for x < 1, PR falls 
rapidly with increasing energy as compared to the Boltzmann 
factor. Thus unless E12 or m is very small, or \s\ — J21 is very 
large, PR is in effect a unit step function in the energy above 
threshold. 

In the Appendix we discuss the thermal averaging of P R ( J ) 
leading to 

PR(T) = exp(-£*/*r)[l - *o(*)] (15) 

where <$>Q(X) is given by 

0 o ( x ) = J o exp(-y) cxp(-x/yl/2)dy (16) 

We show there for x » 1 that PR(T) reduces to exp(-£ ,+/ 
kT). 

Writing P^R(T) as 1 - e, where e = exp(-E*/kT), or more 
properly exp(—E*/kT) times 1 — 4>o(x), we now seek the 
number n of thermally averaged approaches to a crossing such 
that there is a probability of V2 of the given spin state not 
changing. That is, we find n such that 

/ W - ( I - * ) " - V2 (H) 

For E* = 8.4 kcal/mol, T = 300 K, and x « 30, such that 1 
-<t>o(x)ss l,e = 7.6X 10"7, giving n = In 2/e = 9.1 X 105« 
106. Thus n approaches in T s corresponds to a spin half-life T\/I 
of TS. If we set T ;S 1O-6 s, based on the upper limit from NMR 
data for typical Ni(II) complexes, we obtain a lower limit of 
MO12 approaches per second necessary to yield the desired 
half-life. Even ignoring degeneracy factors, which can range 
up to 9 depending upon the number of components of a 3T, 
term that connect to a spin-singlet, this number of approaches 
per second is readily obtainable given a hindered torsional 
frequency in the variable $ of at least 10'2 s~'. A harmonic fit 
to the curves Ks(<i>) and Vj($) in section II yields, for a re­
duced mass of 3.7 X 1O-38 g cm2/rad2 (see Appendix), 
frequencies of approximately 1.2 X 1012 s -1. Since there are 
four approaches to a crossings per cycle, the number of ap­
proaches per period is Agv, where g is a degeneracy factor. Thus 
a value of 4gv at least equal to 1012 s - 1 is readily attainable! 
It should be noted that the activation energy is a crucial input 
parameter to this spin-survival lifetime calculation, and not 
a result. Further, the reversibility of the spin-isomerization 
is not relevant here; that is, it does not matter, for purposes of 
this question, that a spin-singlet that converts to a spin-triplet 
might quickly return to a spin-singlet. Reversibility, however, 
will play a crucial role in the more sophisticated kinetic analysis 
of the next section. 

IV. Dynamical Systems Theory and Chemical Relaxation 
A formalism useful in considering the kinetics of the equil­

ibration of planar-tetrahedral Ni(II) complexes is dynamical 
systems theory (DST)," which is the study of sets of coupled 
differential equations and is concerned largely with the exis­
tence, uniqueness, and stability of steady-state and periodic 
solutions of these sets of equations. We shall be concerned only 
with the simplest of these sets of differential equations, namely, 
those corresponding to closed systems and whose equations are 
first order and linear with constant coefficients. A system is 
said to be closed if there are neither sources nor sinks for any 
state. We have recently outlined12 the convenient matrix for­
mulation13-15 of such first-order systems and presented a 
number of properties of the solutions of the rate equations. A 
brief summary of DST is given here as an introduction to its 
applications to the present problem. 

Consider a closed system consisting of n states labeled 1 , . . . , 
n. Let Xj(t) be the fractional concentration of species in state 
/ at time /. These concentrations satisfy x,(t) > 0 for all / and 
/, and are normalized such that 

£ x,(0 = 1 for all/ (18) 

Also let Wy be the first-order rate constant for the transition 
from state / to state/ with w,-j > 0 for all i and/ The w's may 
be interpreted as thermally averaged rate constants k(T) or 
as energy-dependent rate constants k(E) such as given by the 
product of a Landau-Zener reaction probability PR(E) and 
a frequency of approach to a crossing. The time evolution of 
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each Xj(t) can then be represented by a master equation, 

xi(t) = Z (wj,Xj{t) - W1JX1U)) (19) 
j 

The set of n such equations can be placed into matrix form, 

X(O = AX(f) (20) 

where X(O and X(O are //-dimensional column vectors whose 
elements are x,(0 and x/(t), respectively, and A is an n X n 
matrix whose elements are 

Oij = Wji for / ^ j , and (21) 

an = - L wik 
k*i 

I f A can be diagonalized, the solution of eq 19 corresponding 
to they'th eigenvalue a/ of A is 

Xi^(O = V1J exp(ajt) (22) 

where vy is the ;th element of the eigenvector corresponding 
to they'th eigenvalue. The general solutions of eq 19 are linear 
combinations of the x ,• ^'(O. 

Xi(t) = L bjvij exp(o;0 (23) 
j 

The coefficients bj are determined by the initial conditions 
*/(0), 

JC/(0) = E bjv,j (24) 
j 

or, in matrix notation, 

X(O) = VB (25) 

where the elements of the //-dimensional column vectors X(O) 
and B are x,(0) and b/, respectively, and the elements of the 
n X n matrix V are v,j. Thus, 

B = V-1X(O) (26) 

where V - ' is the inverse of V, and 

X(O = VY(O (27) 

where Y(O is a column vector whose elements are b, exp(a,0-
Note that Y(O) = B. 

The eigenvalues of A are in general complex, but their real 
parts are always nonpositive.14 If a system obeys detailed 
balance then its eigenvalues have zero imaginary parts and are 
thus real.14 An equilibrium solution (eq 22) of eq 19 is one 
whose eigenvalue is zero. In general, A has exactly n — m zero 
eigenvalues where m is the rank of A. It has been shown14 that 
det A = O, and thus at least one equilibrium solution always 
exists. State;' is said to communicate with state j if a system 
prepared in state i has a nonzero Xj{t) at later times; that is, 
if Wij ^ 0 or if there exists a sequence of states k, I, I + 1 , . . . , 
m — 1, m such that w^w^/w/^+i . . . wm-\,mwmj ^ 0. If all 
states communicate with all other states,then the system is 
called strongly connected16 and only one equilibrium solution 
exists.17 This will be the case for all of the systems we now 
consider. 

While we can easily solve the preceding equations for arbi­
trary sets of rate constants, a greater insight results from 
considering certain special cases which also can serve as ide­
alized models for the interconversion of structures of Ni(II) 
complexes. If a system consists of set A of m states and a set 
B of n states, and if each of the m states has forward and re­
verse rate constants Wf and wr, respectively, to and from each 
of the n states, and if all w's are zero within each set, then we 

have shown12 that the m + n eigenvalues are a unique a = 0, 
a set a = —nw{ with degeneracy m — 1, a set a = — mwT with 
degeneracy n — 1, and a unique a = —{mwr + nwf). For m = 
n = 1, the only nonzero eigenvalue is the familiar a = —(wf + 
wr) decay constant for a nonequilibrium distribution in a 
two-state system. For m = 1, but n variable, as in application 
to a spin-singlet interacting with n components of a 3Ti term 
of a tetrahedral Ni(II) complex, the nonzero eigenvalues are 
a set a = — wr with degeneracy n — 1 and the unique a = —(/Wf 
+ wr). The values — wT correspond to the relatively slow decay 
modes in which a nonequilibrium distribution within the set 
B of n states equilibrates via the unique state in set A subject 
to the constraint that x\ = 0, that is, that the concentration in 
the unique state (the singlet) remains constant at its equilib­
rium value of wT/(nw{ + wT). The more negative eigenvalue 
a = -(/Wf + wr) corresponds to the relatively fast mode in 
which an imbalance of the set A concentration relative to the 
set B concentration decays with time, subject to the constraint 
that each state in set B has the same displacement from equi­
librium. As given by eq 22-27, an arbitrary set of concentra­
tions is a linear combination of all m + n modes, and thus the 
system does not in general have a simple exponential time ev­
olution. It should be added that we have also extended12 the 
treatment to include nonzero w's within each set. The intraset 
relaxation modes are no longer necessarily slower than the 
interset modes, but the eigenvalues for the interset modes are 
independent of the values of the intraset rate constants.'8 

The application of the above results to the Ni(II) complexes 
follows by the identification of each w as the product of a 
thermally averaged Landau-Zener transition probability as 
given by eq 15 and a frequency v to be specified later. Thus Wf 
= v exp(-E*/RT) =* (7.6 X 1O-7V for E* = 8.4 kcal/mol 
and7 ,= 300K,andwr = /.exp[(-£* + AE)/RT] ^ (1.3 X 
10-5)f for AE = 1.7 kcal/mol. While these w's must satisfy 
AE = -RT In (wf/wr), they do not reproduce the Ni(dpp)Cb 
equilibrium constant2 of 0.75 unless n is set equal to exp(AS/ 
R), a value in the range 9-14 using AS = 4.8 ± 0.5 eu. The 
simplifying assumption is made here that Wf, and similarly wr, 
is the same for each member of the triplet set B. That is, we are 
ignoring the fact that different components of the triplet not 
only intersect the singlet at different energies, but also that they 
are characterized by different spin-orbit couplings to the 
singlet and by different | j | — S2I values as appear in eq 9. 
Given these assumptions as defining an average interaction, 
the most negative decay constant a = —(/Wf + wr) becomes 
(—1.53 X 10~5)i/ for n = 3, the number of triplet levels con­
necting to the singlet in Di symmetry.1 For motion along in­
tersecting curves such as in Figure 1 there are four approaches 
per period of quasi-harmonic motion in a sinusoidal well. Thus 
the effective frequency of encounter v is four times the torsional 
vibrational frequency. If the latter is 1.2 X 1012 s_1 (see section 
III), then a = -7.3 X 107 s - 1 for the interset mode and -6.2 
X 107 s_1 for each of the intraset modes. These values are 
comparable because Wf < wr in this case. The assumption of 
quasi-harmonic motion is not a bad approximation for energies 
below the maxima in the unperturbed potential energy curves, 
and admits the further simplification that since the frequency 
of harmonic motion is independent of energy, the frequency 
of traversals of the avoided crossing points is also independent 
of energy. Thus it was valid to interpret the w's as thermally 
averaged rate constants. In general, however, the proper pro­
cedure would be to solve for the decay modes as a function of 
energy and then carry out a thermal averaging. While the 
preceding decay constants are obtained from a highly idealized 
model, they do indicate that decay constants of the order of 
—107 s_1 may be accounted for using reasonable parameters. 
More importantly, the model portrays relationships between 
features of the potential energy surfaces and kinetic parame­
ters. 
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Figure 3. Plot of the integral <t>o(x) of eq A4 vs. x. 

V. Summary 
In the second article of this series we have described the 

kinetics of the equilibration of planar spin-singlet and tetra-
hedral spin-triplet species of Ni(II) complexes using two dif­
ferent but related theoretical approaches. First, simplified 
potential energy curves in a twisting coordinate were used to­
gether with the Landau-Zener for transitions at curve cross­
ings to estimate the number of thermally averaged approaches 
to a crossing needed per second in order for the half-life of a 
given spin species not to exceed approximately 1O-6 s. The 
resulting value of ~1012 is compatible with estimated torsional 
frequencies. Second, the general method of analyzing kinetic 
networks known as dynamical systems theory was outlined and 
applied to the description of chemical relaxation such as occurs 
in experiments2 where the thermal equilibrium between the 
species is disturbed. A number of model kinetic systems were 
considered which have the cyclic symmetry characteristic of 
the interconversion of the structures of Ni(II) complexes along 
non-bond-rupturing bending and twisting coordinates. Ei­
genvalues (decay constants) and eigenvectors for displacements 
from equilibrium were presented for these systems and used 
to describe different types of possible relaxation processes. 

In conclusion we have shown that the observed rapid rates 
of interconversion of planar spin-singlet and tetrahedral 
spin-triplet species of Ni(II) complexes are compatible with 
the assumption of a "curve crossing" process involving ther­
mally averaged Landau-Zener transition probabilities. One 
major reason that the interconversion is often so rapid despite 
the small value of the thermally averaged spin-change prob­
ability per approach to a curve crossing is that the crossing 
occurs in a torsional vibrational coordinate, so that the number 
of "encounters" per second is proportional to the vibrational 
frequency. In short, the system is "trapped" in a cyclic coor­
dinate and cannot avoid frequent crossings except in the limit 
of the thermal energy being extremely small compared to the 
activation energy (say 2OkT « E*). It should be noted that 
we have not attempted to elucidate the electronic factors de­
termining the activation energy for a given complex, but in­
stead have presented an analysis of the interconversion process 
in which the activation energy is a parameter. Similar analyses 
should be possible for other spin equilibration reactions, such 
as that between singlet and quintet states of six-coordinate 
Fe(II). 

A subsequent article in this series will present a number of 
refinements of the theoretical analysis. These include the use 
of more realistic potential energy functions, the extension of 
the Landau-Zener treatment to include both spherical polar 

angles 6 and $ simultaneously (both Teller19 and Nikitin76 

have discussed Landau-Zener transition probabilities in a 
two-dimensional Cartesian space), and the extension to 
strong-coupled noncrossing curves20 using the recent methods 
of Dinterman and Delos.21 
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Appendix. Thermal Averaging of Landau-Zener Transition 
Probability 

In section III we considered the Landau-Zener probability 
of reaction at a curve crossing in the form 

/>R(F) = 0 for>><0 (Al) 

PR0>) = 1 - exp(x/y1/2) for y > 0 

The variables x and y are given in dimensionless reduced form 
in eq 12 and 13, respectively. We now define a thermally av­
eraged reaction probability PR[T) as 

f " exp(-E/kT)PR(E) d£ 

PR(T) = - 1 — (A2) 

C"exp(-E/kT)dE 

which reduces to 

PK(T) = cxp(-E*/kT)[l - <Po(x)] (A3) 

in which 

<t>o(x) - J0" exp(-y) txp(-x/y 1Z2) dy (A4) 

Essentially identical thermal averagings have been given be-
fore,7b'IOa'22 but we wish to have the results expressed in our 
notation. Expression A3 is for the process state 1 -» state 2; 
for the reverse process, replace £* in the experimental pre-
factor by E* — AE, where AE = Ei — E\. Thus the ratio of 
forward to reverse reaction probabilities is exp(-AE/kT), a 
familiar result for nondegenerate states. 

The integral (j>o(x) in eq A3 and A4 arises in various thermal 
averagings including the description of thermal neutron scat­
tering. A power series expansion useful for x < 1 was given by 
Zahn23 and an asymptotic solution useful for large x was given 
by Laporte.24 Corrections and extensions of the asymptotic 
solution have been noted by Torrey25 and by Abramowitz.26 

We have written a FORTRAN program to evaluate 4>o(x) to at 
least seven significant figure accuracy for arbitrary values of 
x. Figure 3 shows <j>o(x) for x values up to 4, at which point the 
function has fallen from its value of unity at x = 0 to 
0.023 86. 

For a rough estimate for x appropriate to a complex such 
as Ni(dpp)Cl2, we took E12 = f(3rf) = 1.86 kcal/mol = 649 
cm -1, m = reduced motion of inertia = 3.7 X 10"38 g cm2/ 
rad2 (based on rotation of Ch only, with bond length of 2.51 
A and a Cl-Ni-Cl bond angle of 90°), Is1-S2]= 30.2 kcal 
mol-1 rad-1 (see section III) and T= 300 K, yielding x = 31.6 
and <t>o(x) = 3.27 X 10~8. For neighboring values of x = 30 
and35,4>o(*) = 6.142X 1O-8 and 8.954 X lO"9, respectively. 
If the larger value of \s] - s2\ = 60.2 kcal/mol is used instead, 
x = 15.8 and 4>0(x) = 2.925 X 10~5. Thus <p0(x) « 1, reducing 
PR(T) to 

PR(T) = exp(-£*A T) 

Note that x varies only as m'I2, so that the value of m used is 
not critical as long as it is not too small. For bisbidentate 
complexes m, and hence x, would be larger than the values 
given above, so that <po(x) would be even less important when 
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compared to unity. While E \ 2 does enter x quadratically, the 
exact value used is not very important unless it is small enough 
to give x less than, say, unity. The insensitivity of 1 - <j>o(x) 
to variation in x when x » 1 is simply the result of the rapid 
fall-off of the Boltzmann factor exp(-y) as compared to 
^ROO- This behavior was shown in Figure 2 and discussed in 
section III. 
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nature of the active site. The experiment was tried by Loehr 
and co-workers,3 without positive results, but their available 
laser wavelengths were far from resonance. In view of recent 
reports of substantial Raman enhancement of cobalt-ligand 
stretching modes in resonance with the visible absorption bands 
of tetrahedral cobalt(II) complexes,4 the cobalt enzymes bear 
reexamination. 

The most common zinc active-site ligand is imidazole. Three 
imidazoles are bound to zinc in carbonic anhydrase,5 two in 
carboxypeptidase6 and thermolysin,7 and one in liver alcohol 
dehydrogenase.8 It is therefore of importance to define the 
Raman characteristics of cobalt(II) imidazole complexes. 
Yoshida et al. have published a Raman study of such com­
plexes,3 which was, however, limited to the high-frequency 
ligand modes, and to excitation with blue and green laser lines. 
In the present work we have focused on resonance effects ob­
servable in the red and the near-ultraviolet regions of the 
spectrum. The former provides selective enhancement of co-
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Abstract: Raman spectra, excited in the visible and near-ultraviolet (363.8 nm) regions, are reported for imidazole (ImH) and 
its Ni and C2 deuterated derivatives, and for several cobalt(II) complexes, chosen as analogues for the coordination group of 
zinc (cobalt) proteins Co(ImH)42+, Co(ImHhC^, Co(Im),*2-, Co(his)2, and Co(hish2_ (his = histidinate), as well as AV 
methyl, C2-methyl, and Ni and C2 deuterated analogues. Excitation in the visible absorption band enhances cobalt-ligand 
modes of the tetrahedral complexes. The intensity patterns suggest a vibronic mixing mechanism with charge-transfer upper 
states. The cobalt-imidazole frequencies suggest unusual strength for the Co-ImH bond in Co(ImH)1J

2+, perhaps reflecting 
hydrogen bonding to the solvent. Imidazole ring modes are reassigned on the basis of corrected deuteration data. Frequency 
shifts on binding to Co2+ are unremarkable. However, the most intense band, at 1255 cm-1, shifts significantly upon Ni deu­
teration when complexed but not when free, and may therefore serve as a marker for cobalt-bound imidazole in proteins. The 
complexed ring modes are not enhanced in the visible but show significant enhancement in the near UV. 
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